Higher gauge theory is a higher order version of gauge theory that makes possible the definition of 2-dimensional holonomy along surfaces embedded in a manifold where a gauge 2-connection is present. In this paper, we study Hamiltonian models for discrete higher gauge theory on a lattice decomposition of a manifold. We show that a construction for higher lattice gauge theory is well-defined, including in particular a Hamiltonian for topological phases of matter in 3+1 dimensions. Our construction builds upon the Kitaev quantum double model, replacing the finite gauge connection with a finite gauge 2-group 2-connection. Our Hamiltonian higher lattice gauge theory model is defined on spatial manifolds of arbitrary dimension presented by sligh...