International audienceYuri Matiyasevich's theorem states that the set of all Diophantine equations which have a solution in non-negative integers is not recursive. Craig Smoryński's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. Let R be a subring of Q with or without 1. By H_{10}(R), we denote the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can decide whether or not the equation has a solution in R. We prove that a positive solution to H_{10}(R) implies that the set of all Diophantine equations with a finite number of solutions in R is recursively enumerable. We sh...