Rigiditätstheorie untersucht ebene und räumliche Realisierungen von Graphen, die gegebenen Bedingungen durch Kantenlängen genügen. Eine Realisierung ist mit einer Kantenbeschriftung kompatibel, wenn die euklidische Distanz zwischen zwei adjazenten Knoten gleich der Beschriftung dieser Kante ist. Wir sagen, dass zwei Realisierungen kongruent sind, wenn sie sich nur durch starre Transformationen unterscheiden. Beschriftungen mit unendlich vielen nicht-kongruenten kompatiblen Realisierungen heißen flexibel, wohingegen jene mit einer positiven endlichen Anzahl an Realisierungen starr genannt werden. Ein Graph heißt generisch starr, wenn die durch eine generische Realisierung induzierte Beschriftung starr ist. Ein solcher Graph kann aber trotzde...
A planar framework – a graph together with a map of its vertices to the plane – is flexible if it al...
A d-dimensional framework is a graph and a map from its vertices to E^d. Such a framework is globall...
A bar-joint framework $(G,p)$ in the Euclidean space $\mathbb{E}^d$ is globally rigid if it is the u...
This is a SageMath package for studying flexible and rigid labelings of graphs. It implements the c...
A rigidity theory is developed for the Euclidean and non-Euclidean placements of countably infinite ...
AbstractTensegrity frameworks are defined on a set of points in Rd and consist of bars, cables, and ...
We show that any graph that is generically globally rigid in ℝd has a realization in ℝd both generic...
The theory of rigidity studies the uniqueness of realizations of graphs, i.e., frameworks. Originall...
In this paper we use a recent algorithm for finding flexible realizations of graphs. In particular w...
AbstractA straight-line realization of (or a bar-and-joint framework on) graph G in Rd is said to be...
Tensegrity frameworks are defined on a set of points in Rd and consist of bars, cables, and struts, ...
We develop a rigidity theory for bar-joint frameworks in Euclidean d-space in which specified classe...
A bar-joint framework (퐺,푝) in ℝ푑 is rigid if the only edge-length preserving continuous motions of ...
This dataset contains examples of graphs comparing rigidity concepts for generic bar-joint framework...
La théorie de la rigidité étudie l'unicité des réalisations des graphes, i.e., des charpentes. Initi...
A planar framework – a graph together with a map of its vertices to the plane – is flexible if it al...
A d-dimensional framework is a graph and a map from its vertices to E^d. Such a framework is globall...
A bar-joint framework $(G,p)$ in the Euclidean space $\mathbb{E}^d$ is globally rigid if it is the u...
This is a SageMath package for studying flexible and rigid labelings of graphs. It implements the c...
A rigidity theory is developed for the Euclidean and non-Euclidean placements of countably infinite ...
AbstractTensegrity frameworks are defined on a set of points in Rd and consist of bars, cables, and ...
We show that any graph that is generically globally rigid in ℝd has a realization in ℝd both generic...
The theory of rigidity studies the uniqueness of realizations of graphs, i.e., frameworks. Originall...
In this paper we use a recent algorithm for finding flexible realizations of graphs. In particular w...
AbstractA straight-line realization of (or a bar-and-joint framework on) graph G in Rd is said to be...
Tensegrity frameworks are defined on a set of points in Rd and consist of bars, cables, and struts, ...
We develop a rigidity theory for bar-joint frameworks in Euclidean d-space in which specified classe...
A bar-joint framework (퐺,푝) in ℝ푑 is rigid if the only edge-length preserving continuous motions of ...
This dataset contains examples of graphs comparing rigidity concepts for generic bar-joint framework...
La théorie de la rigidité étudie l'unicité des réalisations des graphes, i.e., des charpentes. Initi...
A planar framework – a graph together with a map of its vertices to the plane – is flexible if it al...
A d-dimensional framework is a graph and a map from its vertices to E^d. Such a framework is globall...
A bar-joint framework $(G,p)$ in the Euclidean space $\mathbb{E}^d$ is globally rigid if it is the u...