International audienceA method is proposed and evaluated to model large and inconvenient phase space files used in Monte Carlo simulations by a compact Generative Adversarial Network (GAN). The GAN is trained based on a phase space dataset to create a neural network, called Generator (G), allowing G to mimic the multidimensional data distribution of the phase space. At the end of the training process, G is stored with about 0.5 million weights, around 10 MB, instead of few GB of the initial file. Particles are then generated with G to replace the phase space dataset. This concept is applied to beam models from linear accelerators (linacs) and from brachytherapy seed models. Simulations using particles from the reference phase space on one h...