This thesis propounds and develops a system-of-systems (SoS) framework for the risk analysis of industrial installations and critical infrastructures. System representation, modeling and simulation methods are developed to capture the peculiar features of SoS, with respect to their vulnerability and physical resilience to random failures and natural hazards. Several representation techniques of literature, i.e., Fault Tree, Muir Web, Hierarchical Modeling, Goal Tree Success Tree – Dynamic Master Logic Diagram, are explored and originally extended/tailored to fit the purpose of SoS analysis. One representation method is developed ex-novo, namely the Hierarchical Graph. Within these representation frameworks, binary and multiple states are us...