International audienceBoolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logical models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scal-able training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In this paper, we generalize such a learning procedure to take into account the time series traces of phosphoproteomics data in order to discriminate Boolean networks according to their transient dynamics. To that goal, we exhibit a necessary condition that must be satisfied by a Boolean network dynamics to be consistent with a dis...