This Ph. D. work addresses the vulnerability analysis of safety-critical systems (e.g., nuclear power plants) within a framework that combines the disciplines of risk analysis and multi-criteria decision-making. The scientific contribution follows four directions: (i) a quantitative hierarchical model is developed to characterize the susceptibility of safety-critical systems to multiple types of hazard, within the needed `all-hazard' view of the problem currently emerging in the risk analysis field; (ii) the quantitative assessment of vulnerability is tackled by an empirical classification framework: to this aim, a model, relying on the Majority Rule Sorting (MR-Sort) Method, typically used in the decision analysis field, is built on the ba...