Blind source separation (BSS) consists of estimating the source signals only from the observed mixtures. The problem can be divided into two categories according to the mixing model: instantaneous mixtures, where delay and reverberation (multi-path effect) are not taken into account, and convolutive mixtures which are more general but more complicated. Moreover, the additive noise at the sensor level and the underdetermined setting, where there are fewer sensors than the sources, make the problem even more difficult.In this thesis, we first studied the link between two existing methods for instantaneous mixtures: independent component analysis (ICA) and sparse component analysis (SCA). We then proposed a new formulation that works in both d...