Sea (M, g) una variedad riemanniana cerrada de dimensión n. El problema de Yamabe radica en encontrar una métrica conforme a g con curvatura escalar constante. Se sabe que la respuesta es sı́, y fue probado por Yamabe,Trudinger, Aubin y Schoen. La métrica conforme g̃ = u^{p−2}g tiene curvatura escalar constante si y solo si u satisface la ecuación de Yamabe. En los trabajos de Yamabe, Trudinger, Aubin y Schoen se prueba que la ecuación de Yamabe siempre tiene al menos una solución positiva. En esta tesis obtenemos resultados sobre multiplicidad de soluciones de ecuaciones tipo Yamabe en variedades.Fil: Rey, Carolina Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. ...
Let (Mm,g) be a closed Riemannian manifold (m≥2) of positive scalar curvature and (Nn,h) any closed ...
We study local rigidity and multiplicity of constant scalar curvature metrics in arbitrary products ...
The aim of this monograph is to present a self-contained introduction to some geometric and analytic...
Given a compact Riemannian manifold (M, g) without bound- ary of dimension m ≥ 3 and under some symm...
We prove a multiplicity results for the Yamabe problem on the manifold (S, gε), where gε is a pertur...
AbstractWe prove a multiplicity result for the Yamabe problem on the manifold (S, g), where g is a p...
Given a compact Riemannian manifold $(M, g)$ without boundary of dimension $m\geq 3$ and under some ...
In this paper, we establish the existence of solutions and multiplicity properties for generalized Y...
Supported by MURST Gruppo Nazionale 40% 'Variational Methods and Nonlinear Differential Equations'Co...
The existence of three nontrivial solutions for a nonlinear problem on compact d-dimensional (d >= 3...
In this thesis are studied some non-linear problems arising in Riemannian Geometry, namely the Yamab...
Let M^n be a closed manifold with n>=3 and (N, h) be a Riemannian manifold with positive constant sc...
Let (M, g) be a closed Riemannian manifold of dimension n≥ 3 and x∈ M be an isolated local minimum o...
Neste trabalho, modelamos o Problema de Yamabe em um fibrado riemanianno determinado por uma submers...
Apresentaremos alguns resultados de rigidez e de bifurcação para soluções do problema de Yamabe em v...
Let (Mm,g) be a closed Riemannian manifold (m≥2) of positive scalar curvature and (Nn,h) any closed ...
We study local rigidity and multiplicity of constant scalar curvature metrics in arbitrary products ...
The aim of this monograph is to present a self-contained introduction to some geometric and analytic...
Given a compact Riemannian manifold (M, g) without bound- ary of dimension m ≥ 3 and under some symm...
We prove a multiplicity results for the Yamabe problem on the manifold (S, gε), where gε is a pertur...
AbstractWe prove a multiplicity result for the Yamabe problem on the manifold (S, g), where g is a p...
Given a compact Riemannian manifold $(M, g)$ without boundary of dimension $m\geq 3$ and under some ...
In this paper, we establish the existence of solutions and multiplicity properties for generalized Y...
Supported by MURST Gruppo Nazionale 40% 'Variational Methods and Nonlinear Differential Equations'Co...
The existence of three nontrivial solutions for a nonlinear problem on compact d-dimensional (d >= 3...
In this thesis are studied some non-linear problems arising in Riemannian Geometry, namely the Yamab...
Let M^n be a closed manifold with n>=3 and (N, h) be a Riemannian manifold with positive constant sc...
Let (M, g) be a closed Riemannian manifold of dimension n≥ 3 and x∈ M be an isolated local minimum o...
Neste trabalho, modelamos o Problema de Yamabe em um fibrado riemanianno determinado por uma submers...
Apresentaremos alguns resultados de rigidez e de bifurcação para soluções do problema de Yamabe em v...
Let (Mm,g) be a closed Riemannian manifold (m≥2) of positive scalar curvature and (Nn,h) any closed ...
We study local rigidity and multiplicity of constant scalar curvature metrics in arbitrary products ...
The aim of this monograph is to present a self-contained introduction to some geometric and analytic...