For high-dimensional linear regression models, we review and compare several estimators of variances τ2 and σ2 of the random slopes and errors, respectively. These variances relate directly to ridge regression penalty λ and heritability index h2, often used in genetics. Several estimators of these, either based on cross-validation (CV) or maximum marginal likelihood (MML), are also discussed. The comparisons include several cases of the high-dimensional covariate matrix such as multi-collinear covariates and data-derived ones. Moreover, we study robustness against model misspecifications such as sparse instead of dense effects and non-Gaussian errors. An example on weight gain data with genomic covariates confirms the good performance of MM...