L'algèbre des fonctions symétriques est un outil majeur de la combinatoire algébrique qui joue un rôle central dans la théorie des représentations du groupe symétrique. Cette thèse traite des fonctions quasisymétriques, une puissante généralisation introduite par Gessel en 1984, avec des applications significatives dans l'énumération d'objets combinatoires majeurs tels que les permutations, les tableaux de Young et les P-partitions. Plus précisément, nous trouvons un nouveau lien entre l'extension des fonctions quasisymétriques de Chow à des groupes de Coxeter de type B et des tableaux de dominos. Ceci nous permet d'apporter de nouveaux résultats dans divers domaines, notamment les constantes de structure de l'algèbre de descente de Solomon...
We introduce a quasisymmetric generalization of Berele and Regev\u27s (k,l)-hook Schur functions. Th...
International audienceOver the past years, major attention has been drawn to the question of identif...
AbstractWe present an analog of the Robinson-Schensted correspondence that applies to shifted Young ...
The algebra of symmetric functions is a major tool in algebraic combinatorics that plays a central r...
The algebra of symmetric functions is a major tool in algebraic combinatorics that plays a central r...
The algebra of symmetric functions is a major tool in algebraic combinatorics that plays a central r...
International audienceThe Cauchy identity is a fundamental formula in algebraic combinatorics that c...
International audienceThe Cauchy identity is a fundamental formula in algebraic combinatorics that c...
International audienceIntroduced by Solomon in his 1976 paper, the descent algebra of a finite Coxet...
Cette thèse se situe au carrefour de la combinatoire énumérative, algébrique et bijective. Elle se c...
Cette thèse se situe au carrefour de la combinatoire énumérative, algébrique et bijective. Elle se c...
International audienceIntroduced by Solomon in his 1976 paper, the descent algebra of a finite Coxet...
Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmet...
The connection between the generating functions of various sets of tableaux and the appropriate fami...
International audienceOver the past years, major attention has been drawn to the question of identif...
We introduce a quasisymmetric generalization of Berele and Regev\u27s (k,l)-hook Schur functions. Th...
International audienceOver the past years, major attention has been drawn to the question of identif...
AbstractWe present an analog of the Robinson-Schensted correspondence that applies to shifted Young ...
The algebra of symmetric functions is a major tool in algebraic combinatorics that plays a central r...
The algebra of symmetric functions is a major tool in algebraic combinatorics that plays a central r...
The algebra of symmetric functions is a major tool in algebraic combinatorics that plays a central r...
International audienceThe Cauchy identity is a fundamental formula in algebraic combinatorics that c...
International audienceThe Cauchy identity is a fundamental formula in algebraic combinatorics that c...
International audienceIntroduced by Solomon in his 1976 paper, the descent algebra of a finite Coxet...
Cette thèse se situe au carrefour de la combinatoire énumérative, algébrique et bijective. Elle se c...
Cette thèse se situe au carrefour de la combinatoire énumérative, algébrique et bijective. Elle se c...
International audienceIntroduced by Solomon in his 1976 paper, the descent algebra of a finite Coxet...
Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmet...
The connection between the generating functions of various sets of tableaux and the appropriate fami...
International audienceOver the past years, major attention has been drawn to the question of identif...
We introduce a quasisymmetric generalization of Berele and Regev\u27s (k,l)-hook Schur functions. Th...
International audienceOver the past years, major attention has been drawn to the question of identif...
AbstractWe present an analog of the Robinson-Schensted correspondence that applies to shifted Young ...