Förstärkande inlärning har fått mycket uppmärksamhet under de senaste åren, främst genom att det används för att lära datorer för att spela video- och brädspel. I denna rapport undersöks hur väl algoritmer från detta område kan användas för att lösa ett problem med flera agenter. Problemet med flera agenter som ska lösas är att lära robotar hur man kan transportera föremål genom ett lager utan att kollidera. En Q-learning-baserad algoritm föreslås för att lösa problemet. På grund av problem med skalbarhet föreslås också en DQN-baserad algoritm. Problem med skalbarhet uppstår i system med högre komplexitet, i system som kännetecknas av flera agenter eller en stor miljö. Det visas att Q-learning misslyckas med att lära sig en bra strategi på ...
Games are commonly used as playground for AI research, specifically in the field of Reinforcement Le...
Deep reinforcement learning algorithms typically require large amounts of data to solve a specific p...
Sammen med dyp læring har Reinforcement Learning (forsterkningslæring) hatt flere gjennombrudd de si...
Förstärkande inlärning har fått mycket uppmärksamhet under de senaste åren, främst genom att det anv...
Reinforcement learning methods allows self-learningagents to play video- and board games autonomousl...
Reinforcement learning has recently gained popularity due to its many successfulapplications in vari...
This report presents an application of reinforcementlearning to the problem of controlling multiple ...
This project concerns optimizing the behavior ofmultiple dispatching robots in a virtual warehouse e...
In this project, we aim to reproduce previous resultsachieved with Deep Reinforcement Learning. We p...
Reinforcement learning can be compared to howhumans learn – by interaction, which is the fundamental...
I denna rapport implementerar vi en reinforcement learning (RL) algoritm som lär sig spela Breakout ...
In this thesis, we used deep reinforcement learning to train autonomous agents and evaluated the imp...
Reinforcement learning has recently become a promising area of machine learning with significant ach...
Systems consisting of multiple robots are traditionallydifficult to optimize. This project considers...
Today defence systems are becoming more complex as technology advances and it is of great importance...
Games are commonly used as playground for AI research, specifically in the field of Reinforcement Le...
Deep reinforcement learning algorithms typically require large amounts of data to solve a specific p...
Sammen med dyp læring har Reinforcement Learning (forsterkningslæring) hatt flere gjennombrudd de si...
Förstärkande inlärning har fått mycket uppmärksamhet under de senaste åren, främst genom att det anv...
Reinforcement learning methods allows self-learningagents to play video- and board games autonomousl...
Reinforcement learning has recently gained popularity due to its many successfulapplications in vari...
This report presents an application of reinforcementlearning to the problem of controlling multiple ...
This project concerns optimizing the behavior ofmultiple dispatching robots in a virtual warehouse e...
In this project, we aim to reproduce previous resultsachieved with Deep Reinforcement Learning. We p...
Reinforcement learning can be compared to howhumans learn – by interaction, which is the fundamental...
I denna rapport implementerar vi en reinforcement learning (RL) algoritm som lär sig spela Breakout ...
In this thesis, we used deep reinforcement learning to train autonomous agents and evaluated the imp...
Reinforcement learning has recently become a promising area of machine learning with significant ach...
Systems consisting of multiple robots are traditionallydifficult to optimize. This project considers...
Today defence systems are becoming more complex as technology advances and it is of great importance...
Games are commonly used as playground for AI research, specifically in the field of Reinforcement Le...
Deep reinforcement learning algorithms typically require large amounts of data to solve a specific p...
Sammen med dyp læring har Reinforcement Learning (forsterkningslæring) hatt flere gjennombrudd de si...