Current text mining applications statistically work on the basis of linguistic models and theories and certain parameter settings. This enables researchers to classify, group and rank a large textual corpus – a useful feature for scholars who study all forms of written text. However, these underlying conditions differ in respect to the way how interpretively-oriented social scientists approach textual data. They aim to understand the meaning of text by heuristically using known categorisations, concepts and other formal methods. More importantly, they are primarily interested in documents that are incomprehensible with our current knowledge because these documents offer a chance to formulate new empirically-grounded typifications, hypothes...