Various applications of the mean field theory (MFT) technique for obtaining solutions close to optimal minima in feedback networks are reviewed. Using this method in the context of the Boltzmann machine gives rise to a fast deterministic learning algorithm with a performance comparable with that of the backpropagation algorithm (BP) in feature recognition applications. Since MFT learning is bidirectional its use can be extended from purely functional mappings to a content addressable memory. The storage capacity of such a network grows like O (10–20)nH with the number of hidden units. The MFT learning algorithm is local and thus it has an advantage over BP with respect to VLSI implementations. It is also demonstrated how MFT and BP are rela...