| openaire: EC/H2020/759557/EU//ALGOComThe fundamental theorem of symmetric polynomials states that for a symmetric polynomial fSym ∈ C[x1, x2, . . ., xn], there exists a unique “witness” f ∈ C[y1, y2, . . ., yn] such that fSym = f(e1, e2, . . ., en), where the ei’s are the elementary symmetric polynomials. In this paper, we study the arithmetic complexity L(f) of the witness f as a function of the arithmetic complexity L(fSym) of fSym. We show that the arithmetic complexity L(f) of f is bounded by poly(L(fSym), deg(f), n). To the best of our knowledge, prior to this work only exponential upper bounds were known for L(f). The main ingredient in our result is an algebraic analogue of Newton’s iteration on power series. As a corollary of this...