none3siThe deployment of real-time workloads on commercial off-the-shelf (COTS) hardware is attractive, as it reduces the cost and time-to-market of new products. Most modern high-end embedded SoCs rely on a heterogeneous design, coupling a general-purpose multi-core CPU to a massively parallel accelerator, typically a programmable GPU, sharing a single global DRAM. However, because of non-predictable hardware arbiters designed to maximize average or peak performance, it is very difficult to provide timing guarantees on such systems. In this work we present our ongoing work on GPUguard, a software technique that predictably arbitrates main memory usage in heterogeneous SoCs. A prototype implementation for the NVIDIA Tegra TX1 SoC shows that...