Persistent homology has proven itself quite efficient in the topological and qualitative comparison of filtered topological spaces, when invariance with respect to every homeomorphism is required. However, we can make the following two observations about the use of persistent homology for application purposes. On the one hand, more restricted kinds of invariance are sometimes preferable (e.g., in shape comparison). On the other hand, in several practical situations filtering functions are not just auxiliary technical tools that can be exploited to study a given topological space, but instead the main aim of our analysis. Indeed, most of the data is usually produced by measurements, whose results are quite often functions defined on a topolo...