The chemical-inspired programming approach is an emerging paradigm for defining the behavior of densely distributed and context-aware devices (e.g., in ecosystems of displays tailored to crowd steering, or to obtain profile-based coordinated visualization). Typically, the evolution of such systems cannot be easily predicted, thus making of paramount importance the availability of techniques and tools supporting prior-to-deployment analysis. Exact analysis techniques do not scale well when the complexity of systems grows: as a consequence, approximated techniques based on simulation assumed a relevant role. This work presents a new simulation-based distributed analysis tool addressing the statistical analysis of such a kind of systems. The t...