We consider wave propagation in a coupled fluid-solid region separated by a static but possibly curved interface. The wave propagation is modeled by the acoustic wave equation in terms of a velocity potential in the fluid, and the elastic wave equation for the displacement in the solid. At the fluid solid interface, we impose suitable interface conditions to couple the two equations. We use a recently developed energy-based discontinuous Galerkin method to discretize the governing equations in space. Both energy conserving and upwind numerical fluxes are derived to impose the interface conditions. The highlights of the developed scheme include provable energy stability and high order accuracy. We present numerical experiments to illustrate ...