In Chapter 2 we present the main de_nitions that will be used throughout the text. In Chapter 3 we de_ne the connections that will be used throughout the text. In Chapter 4 we discuss the notions of Sub-Riemannian curvature and sectional curvature as well as Bianchi Identities. In Chapter 5 we de- _ne the Sub-Riemannian Ricci curvature and the notion of horizontal scalar curvature, prove the Contracted Bianchi Identity, de_ne the gradient of a tensor, the Hessian, the horizontal Laplacian and vertical rigidity. Finally, in Chapter 6, we discuss the di_erences between the Sub-Riemannian connection and the Levi-Civita connection and state a Sub-Riemannian version of the Bonnet-Myers theore
summary:In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like inv...
summary:In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like inv...
The curvature tensor measures the extent to which covariant differentiation on manifolds differs fro...
In Chapter 2 we present the main de_nitions that will be used throughout the text. In Chapter 3 we d...
Abstract. For a sub-Riemannian manifold and a given Riemannian exten-sion of the metric, we define a...
International audienceWe compare different notions of curvature on contact sub-Riemannian manifolds....
International audienceWe compare different notions of curvature on contact sub-Riemannian manifolds....
We compare different notions of curvature on contact sub-Riemannian manifolds. In particular we int...
International audienceWe compare different notions of curvature on contact sub-Riemannian manifolds....
We compare different notions of curvature on contact sub-Riemannian manifolds. In particular, we int...
We prove a sub-Riemannian version of Bonnet-Myers theorem that applies to any quaternionic contact m...
We prove a sub-Riemannian version of Bonnet-Myers theorem that applies to any quaternionic contact m...
Dans cette thèse, on présente une notion de courbure géodésique pour les courbes lisses horizontales...
Dans cette thèse, on présente une notion de courbure géodésique pour les courbes lisses horizontales...
summary:In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like inv...
summary:In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like inv...
summary:In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like inv...
The curvature tensor measures the extent to which covariant differentiation on manifolds differs fro...
In Chapter 2 we present the main de_nitions that will be used throughout the text. In Chapter 3 we d...
Abstract. For a sub-Riemannian manifold and a given Riemannian exten-sion of the metric, we define a...
International audienceWe compare different notions of curvature on contact sub-Riemannian manifolds....
International audienceWe compare different notions of curvature on contact sub-Riemannian manifolds....
We compare different notions of curvature on contact sub-Riemannian manifolds. In particular we int...
International audienceWe compare different notions of curvature on contact sub-Riemannian manifolds....
We compare different notions of curvature on contact sub-Riemannian manifolds. In particular, we int...
We prove a sub-Riemannian version of Bonnet-Myers theorem that applies to any quaternionic contact m...
We prove a sub-Riemannian version of Bonnet-Myers theorem that applies to any quaternionic contact m...
Dans cette thèse, on présente une notion de courbure géodésique pour les courbes lisses horizontales...
Dans cette thèse, on présente une notion de courbure géodésique pour les courbes lisses horizontales...
summary:In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like inv...
summary:In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like inv...
summary:In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like inv...
The curvature tensor measures the extent to which covariant differentiation on manifolds differs fro...