Nuestro trabajo empieza con la necesidad de reconstruir una red de regulacion genética para el genoma humano usando datos del cerebro. Para conseguirlo, estudiamos el problema biológico de como aprender una red de regulación genética y revisamos la literatura para ver cuales son los metodos mas populares para resolver este problema, junto con sus ventajas y limitaciones. Al final, decidimos que el metodo que mejor se ajusta a nuestras necesidades son las redes bayesianas, sobre todo por su interpretabilidad. En este trabajo presentamos un nuevo algoritmo, FGESMerge, capaz de aprender la estructura de una red de regulación genética mediante la unión de varias redes bayesianas aprendidas localmente alrededor de cada uno de los genes, utilizan...
The main purpose of a gene interaction network is to map the relationships of the genes that are out...
This paper provides a brief introduction to learning Bayesian networks from gene-expression data. Th...
Studying the impact of genetic variation on gene regulatory networks is essential to understand the ...
Nuestro trabajo empieza con la necesidad de reconstruir una red de regulacion genética para el genom...
We present a variant of the Fast Greedy Equivalence Search algorithm that can be used to learn a Bay...
De nombreuses fonctions cellulaires sont réalisées grâce à l'interaction coordonnée de plusieurs gèn...
Inferring gene regulatory networks from data requires the development of algorithms devoted to struc...
International audienceReverse engineering of gene regulatory networks is a key issue for functional ...
In genetics and systems biology, Bayesian networks (BNs) are used to describe and iden-tify interdep...
International audienceBACKGROUND: Inferring gene regulatory networks from data requires the developm...
National audienceIn this work, we reconstruct the gene regulation networks from the microarray exper...
Las redes bayesianas representan un modelo matemático con múltiples campos de aplicación. Uno de ell...
AbstractBayesian Networks have been used for the inference of transcriptional regulatory relationshi...
Inferring gene regulatory networks from data requires the development of algorithms devoted to struc...
Recent advances in high-throughput molecular biology has motivated in the field of bioinformatics th...
The main purpose of a gene interaction network is to map the relationships of the genes that are out...
This paper provides a brief introduction to learning Bayesian networks from gene-expression data. Th...
Studying the impact of genetic variation on gene regulatory networks is essential to understand the ...
Nuestro trabajo empieza con la necesidad de reconstruir una red de regulacion genética para el genom...
We present a variant of the Fast Greedy Equivalence Search algorithm that can be used to learn a Bay...
De nombreuses fonctions cellulaires sont réalisées grâce à l'interaction coordonnée de plusieurs gèn...
Inferring gene regulatory networks from data requires the development of algorithms devoted to struc...
International audienceReverse engineering of gene regulatory networks is a key issue for functional ...
In genetics and systems biology, Bayesian networks (BNs) are used to describe and iden-tify interdep...
International audienceBACKGROUND: Inferring gene regulatory networks from data requires the developm...
National audienceIn this work, we reconstruct the gene regulation networks from the microarray exper...
Las redes bayesianas representan un modelo matemático con múltiples campos de aplicación. Uno de ell...
AbstractBayesian Networks have been used for the inference of transcriptional regulatory relationshi...
Inferring gene regulatory networks from data requires the development of algorithms devoted to struc...
Recent advances in high-throughput molecular biology has motivated in the field of bioinformatics th...
The main purpose of a gene interaction network is to map the relationships of the genes that are out...
This paper provides a brief introduction to learning Bayesian networks from gene-expression data. Th...
Studying the impact of genetic variation on gene regulatory networks is essential to understand the ...