In binary Gaussian process classification the prior class membership probabilities are obtained by transforming a Gaussian process to the unit interval, typically either with the logistic likelihood function or the cumulative Gaussian likelihood function. Multiclass classification problems can be handled by any binary classifier by means of so-called binarization techniques, which reduces the multiclass problem into a number of binary problems. Other than introducing the mathematics behind the theory and methods behind Gaussian process classification, we compare the binarization techniques one-against-all and one-against-one in the context of Gaussian process classification, and we also compare the performance of the logistic likelihood and...