碩士[[abstract]]社群網路的興起,許多的消費者樂於在社群媒體上討論分享,表達自己對產品的意見。企業可透過大量的網路評論分析市場上消費者對產品各項特徵的喜好與優缺點,但在過去的文獻中較少應用深度學習於中文評論的情感分析上。 本論文的貢獻為透過文本分析建構出專屬於智慧型手環領域的情感意見詞典,並利用深度學習遞迴神經網路長短期記憶技術於智慧型手環口碑情感分析,與貝氏演算法、支援向量機的結果互相比較。實驗結果顯示,貝氏演算法的正確率為70.67%、支援向量機得到66.01%、深度學習則為89.94%。從而證明深度學習在情感分析上的預測效果最為出色。[[abstract]]The rise of social networking, many consumers are willing to discuss in the community media to share, express their views on the product. Enterprises can analyze the consumers'' preferences and advantages and disadvantages of the various products on the market through a large number of online reviews, but in the past the literature is less applied to the Deep Learning in the Sentiment Analysis of Chinese comments. The contribution of this thesis is...