Future cellular network technologies are targeted at delivering self-organizable and ultra-high capacity networks, while reducing their energy consumption. This thesis studies intelligent spectrum and topology management through cognitive radio techniques to improve the capacity density and Quality of Service (QoS) as well as to reduce the cooperation overhead and energy consumption. This thesis investigates how reinforcement learning can be used to improve the performance of a cognitive radio system. In this dissertation, we deal with the problem of opportunistic spectrum access in infrastructureless cognitive networks. We assume that there is no information exchange between users, and they have no knowledge of channel statistics and other...