International audienceIn heterogeneous landscapes, when species occupy discrete habitat patches, ecological connectivity is influenced by populations’ topology. Graph-theoretic methods constitute a relevant tool to reveal this topology and better analyse gene flow. Despite growing interest in genetic graphs, a better understanding of when and how to use them is lacking.To fill this gap, we simulated gene flow between 50 populations in different landscape configurations and constructed genetic graphs using various genetic distances and pruning (link selection) methods. We then compared metrics derived from these graphs to analogous metrics describing the topology and connectivity of the dispersal network driving gene flow during the simulati...