For a simple graph $G=(V,E),$ let $\mathcal{S}_+(G)$ denote the set of real positive semidefinite matrices $A=(a_{ij})$ such that $a_{ij}\neq 0$ if $\{i,j\}\in E$, $a_{ij}=0$ if $\{i,j\}\notin E$, and $a_{ii}$ is any real number. The maximum positive semidefinite nullity of $G$, denoted $\Mp(G),$ is $\max\{\nullity(A)|A\in \mathcal{S}_+(G)\}.$ A tree cover of $G$ is a collection of vertex-disjoint simple trees occurring as induced subgraphs of $G$ that cover all the vertices of $G$. The tree cover number of $G$, denoted $T(G)$, is the minimum cardinality of a tree cover. It is known that the tree cover number of a graph and the maximum positive semidefinite nullity of a graph are equal for outerplanar graphs, and it was conjectured in 2011 ...