This paper addresses qualitative and quantitative diversity and specialization issues in the framework of self-organizing, distributed, artificial systems. Both diversity and specialization are obtained via distributed learning from initially homogeneous swarms. While measuring diversity essentially quantifies differences among the individuals, assessing the degree of specialization implies correlation between the swarm’s heterogeneity with its overall performance. Starting from the stick-pulling experiment in collective robotics, a task that requires the collaboration of two robots, we abstract and generalize in simulation the task constraints to k robots collaborating sequentially or in parallel. We investigate quantitatively the influenc...