Complex systems and relational data are often abstracted as dynamical processes on networks. To understand, predict, and control their behavior, a crucial step is to extract reduced descriptions of such networks. Inspired by notions from control theory, we propose a time-dependent dynamical similarity measure between nodes, which quantifies the effect a node-input has on the network. This dynamical similarity induces an embedding that can be employed for several analysis tasks. Here we focus on (i) dimensionality reduction, i.e., projecting nodes onto a low-dimensional space that captures dynamic similarity at different timescales, and (ii) how to exploit our embeddings to uncover functional modules. We exemplify our ideas through case stud...