We study from an algebraic point of view the question of extending an action of a group Γ on a commutative domain R to a formal pseudodifferential operator ring B = R((x ; d)) with coefficients in R, as well as to some canonical quadratic extension C = R((x 1/2 ; 1 2 d))2 of B. We give a necessary and sufficient condition of compatibility between the action and the derivation d of R for such an extension to exist, and we determine all possible extensions of the action to B and C. We describe under suitable assumptions the invariant subalgebras B Γ and C Γ as Laurent series rings with coefficients in R Γ. The main results of this general study are applied in a numbertheoretical context to the case where Γ is a subgroup of SL(2, C) acting by ...