Da Prato G, Flandoli F, Priola E, Röckner M. Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. The Annals Of Probability. 2013;41(5):3306-3344.We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hilbert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on R-d to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin-Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a ...
The present paper seeks to prove the existence and uniqueness of solutions to stochastic evolution e...
The aim of this book is to give a systematic and self-contained presentation of the basic results on...
Barbu V, Röckner M. An operatorial approach to stochastic partial differential equations driven by l...
We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hilber...
We consider stochastic evolution equations in Hilbert spaces with merely measurable and locally boun...
We consider stochastic evolution equations in Hilbert spaces with merely measurable and locally boun...
Da Prato G, Flandoli F, Röckner M, Veretennikov AY. Strong uniqueness for SDEs in Hilbert spaces wit...
We prove strong well-posedness for a class of stochastic evolution equations in Hilbert spaces H whe...
AbstractThe pathwise uniqueness of stochastic evolution equations driven by Q-Wiener processes is ma...
We prove pathwise uniqueness for an abstract stochastic reaction-diffusion equation in Banach spaces...
AbstractAn abstract evolution equation in Hilbert spaces is considered. In the deterministic case, i...
We prove existence and uniqueness of strong solutions for a class of semilinear stochastic evolution...
Rehmeier M. On Cherny's results in infinite dimensions: a theorem dual to Yamada-Watanabe. Stochasti...
AbstractExistence and uniqueness theorems for stochastic evolution equations are developed in a Hilb...
The present paper seeks to prove the existence and uniqueness of solutions to stochastic evolution e...
The aim of this book is to give a systematic and self-contained presentation of the basic results on...
Barbu V, Röckner M. An operatorial approach to stochastic partial differential equations driven by l...
We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hilber...
We consider stochastic evolution equations in Hilbert spaces with merely measurable and locally boun...
We consider stochastic evolution equations in Hilbert spaces with merely measurable and locally boun...
Da Prato G, Flandoli F, Röckner M, Veretennikov AY. Strong uniqueness for SDEs in Hilbert spaces wit...
We prove strong well-posedness for a class of stochastic evolution equations in Hilbert spaces H whe...
AbstractThe pathwise uniqueness of stochastic evolution equations driven by Q-Wiener processes is ma...
We prove pathwise uniqueness for an abstract stochastic reaction-diffusion equation in Banach spaces...
AbstractAn abstract evolution equation in Hilbert spaces is considered. In the deterministic case, i...
We prove existence and uniqueness of strong solutions for a class of semilinear stochastic evolution...
Rehmeier M. On Cherny's results in infinite dimensions: a theorem dual to Yamada-Watanabe. Stochasti...
AbstractExistence and uniqueness theorems for stochastic evolution equations are developed in a Hilb...
The present paper seeks to prove the existence and uniqueness of solutions to stochastic evolution e...
The aim of this book is to give a systematic and self-contained presentation of the basic results on...
Barbu V, Röckner M. An operatorial approach to stochastic partial differential equations driven by l...