Denna avhandling presenterar ett tillvägagångssätt för att förutspå förflyttning inom folkmassor med hjälp av LSTM-neurala nätverk. Specifikt analyseras inflytandet som olika frekvenser av tidsserier har på både prognosen för folkmassorna och designen i arkitekturen inom transport och handel. Arkitekturen påverkas även då frekvensändringar provocerar fram en ökning eller minskning i datamängd och arkitekturen därför bör anpassas. Tidigare forskning inom prognoser relaterade till folkmassor har huvudsakligen fokuserat på att förutspå folkmassans nästa förflyttning snarare än att definiera mängden människor på en specifik plats under ett specifikt tidsspann. Dessa studier har använt olika tekniker som till exempel Random Forest eller Feed For...