We consider the conformal group of a space of dim n=p+q, with SO(p,q) metric. The quotient of this group by its homogeneous Weyl subgroup gives a principal fiber bundle with 2n-dim base manifold and Weyl fibers. The Cartan generalization to a curved 2n-dim geometry admits an action functional linear in the curvatures. Because symmetry is maintained between the translations and the special conformal transformations in the construction, these spaces are called biconformal; this same symmetry gives biconformal spaces overlapping structures with double field theories, including manifest T-duality. We establish that biconformal geometry is a form of double field theory, showing how general relativity with integrable local scale invariance arises...