Sensor designs found in nature are optimal due to their evolution over millions of years, making them well-suited for sensing applications. However, replicating these complex, three-dimensional (3D), biomimetic designs in artificial and flexible sensors using conventional techniques such as lithography is challenging. In this paper, we introduce a new processing paradigm for the simplified fabrication of flexible sensors featuring complex and bioinspired structures. The proposed fabrication workflow entailed 3D-printing a metallic mold with complex and intricate 3D features such as a micropillar and a microchannel, casting polydimethylsiloxane (PDMS) inside the mold to obtain the desired structure, and drop-casting piezoresistive graphene n...