We briefly survey the basic concepts and results concerning the computational power of neural net-orks which basically depends on the information content of eight parameters. In particular, recurrent neural networks with integer, rational, and arbitrary real weights are classi ed within the Chomsky and finer complexity hierarchies. Then we re ne the analysis between integer and rational weights by investigating an intermediate model of integer-weight neural networks with an extra analog rational-weight neuron (1ANN). We show a representation theorem which characterizes the classification problems solvable by 1ANNs, by using so-called cut languages. Our analysis reveals an interesting link to an active research field on non-standard position...