Publication rights licensed to ACM. Sparse tiling is a technique to fuse loops that access common data, thus increasing data locality. Unlike traditional loop fusion or blocking, the loops may have different iteration spaces and access shared datasets through indirect memory accesses, such as A[map[i]]-hence the name “sparse.” One notable example of such loops arises in discontinuous-Galerkin finite element methods, because of the computation of numerical integrals over different domains (e.g., cells, facets). The major challenge with sparse tiling is implementation-not only is it cumbersome to understand and synthesize, but it is also onerous to maintain and generalize, as it requires a complete rewrite of the bulk of the numerical computa...