International audienceArgon microbubbles will exist in the primary sodium of the next generation of sodium-cooled fast reactors (SFR). Due to its opacity, acoustic methods will be used for the in-service inspection in these reactors, but the presence of such bubbles will greatly affect ultrasonic wave propagation. Moreover, these bubbles can lead to the formation of gas pockets in the reactor and impact cavitation and boiling phenomena. It is therefore necessary to characterise what is called the 'microbubble cloud' by providing the volume fraction and the bubble size distribution. Safety requirements in this field call for robust inspection methods based on very few assumptions about the bubble populations. The objective of this study is t...