The problems of continuous optimization are numerous, in economics, in signal processing, in neural networks, and so on. One of the best-known and most widely used solutions is the evolutionary algorithm, a metaheuristic algorithm based on evolutionary theories that borrows stochastic mechanisms and has shown good performance in solving problems of continuous optimization. The use of this family of algorithms is very popular, despite the many difficulties that can be encountered in their design. Indeed, these algorithms have several parameters to adjust and a lot of operators to set according to the problems to solve. In the literature, we find a plethora of operators described, and it becomes complicated for the user to know which one to s...