We define and analyze the notion of variational Wardrop equilibrium for nonatomic aggregative games with an infinity of players types. These equilibria are characterized through an infinite-dimensional varia-tional inequality. We show, under monotonicity conditions, a convergence theorem enables to approximate such an equilibrium with arbitrary precision. To this end, we introduce a sequence of nonatomic games with a finite number of players types, which approximates the initial game. We show the existence of a symmetric Wardrop equilibrium in each of these games. We prove that those symmetric equilibria converge to an equilibrium of the infinite game, and that they can be computed as solutions of finite-dimensional variational inequalities...
The anonymous interaction of large numbers of economic agents is a kind of noncooperative situation ...
We consider Nash equilibria of large anonymous games (i.e., each player’s payoff depends on his choi...
A notion of incentive for agents is introduced which leads to a very general notion of an equilibriu...
We define and analyze the notion of variational Wardrop equilibrium for nonatomic aggregative games ...
After defining a pure-action profile in a nonatomic aggregative game, where players have specific co...
This thesis studies equilibrium problems in aggregative games. A game describes the interaction amon...
International audienceAggregative games have many industrial applications, and computing an equilibr...
We consider the framework of aggregative games, in which the cost function of each agent depends on ...
We consider the framework of aggregative games, in which the cost function of each agent depends on ...
We study the existence and uniqueness of Nash equilibria for a certain class of aggregative games wi...
This paper shows the existence of $\mathcal{O}(\frac{1}{n^\gamma})$-Nash equilibria in $n$-player no...
We analyse deterministic aggregative games, with large but finite number of players, that are subjec...
For infinite games with type-dependent strategies the known sufficient conditions for the existence ...
We introduce the nonatomic supermodular game, where no player's action has any discernible impact on...
The anonymous interaction of large numbers of economic agents is a kind of noncooperative situation ...
We consider Nash equilibria of large anonymous games (i.e., each player’s payoff depends on his choi...
A notion of incentive for agents is introduced which leads to a very general notion of an equilibriu...
We define and analyze the notion of variational Wardrop equilibrium for nonatomic aggregative games ...
After defining a pure-action profile in a nonatomic aggregative game, where players have specific co...
This thesis studies equilibrium problems in aggregative games. A game describes the interaction amon...
International audienceAggregative games have many industrial applications, and computing an equilibr...
We consider the framework of aggregative games, in which the cost function of each agent depends on ...
We consider the framework of aggregative games, in which the cost function of each agent depends on ...
We study the existence and uniqueness of Nash equilibria for a certain class of aggregative games wi...
This paper shows the existence of $\mathcal{O}(\frac{1}{n^\gamma})$-Nash equilibria in $n$-player no...
We analyse deterministic aggregative games, with large but finite number of players, that are subjec...
For infinite games with type-dependent strategies the known sufficient conditions for the existence ...
We introduce the nonatomic supermodular game, where no player's action has any discernible impact on...
The anonymous interaction of large numbers of economic agents is a kind of noncooperative situation ...
We consider Nash equilibria of large anonymous games (i.e., each player’s payoff depends on his choi...
A notion of incentive for agents is introduced which leads to a very general notion of an equilibriu...