In this paper we study the dependence on the loss function of the strategy, which minimises the expected shortfall risk when dealing with a financial contingent claim in the particular situation of a binomial model. After having characterised the optimal strategies in the particular cases when the loss function is concave, linear or strictly convex, we analyse how optimal strategies change when we approximate a loss function with a sequence of suitable loss functions. The particular case of lower partial moments is considered as an example
We consider the problem of shortfall risk minimization when there is uncertainty about the exact sto...
In this paper we show how to deal with shortfall risk minimization in significant multinomial models...
The idea of efficient hedging has been introduced by Follmer and Leukert (2000). They defined the s...
In this paper we study the dependence on the loss function of the strategy which minimises the expec...
In this paper we study the dependence on the loss function of the strategy which minimises the expec...
We consider the problem of minimizing the shortfall risk when the aim is to hedge a contingent claim...
The shortfall risk is defined as the optimal mean value of the terminal deficit produced by a self-f...
There have been profound ideas on how to measure risk which have influenced the financial market. Sh...
We consider a contingent claim in a jump-diffusion model of complete market. Given initial wealth le...
In this paper we consider models of financial markets in discrete and continuous time case, and we s...
An investor faced with a contingent claim may eliminate risk by (super-)hedging in a financial marke...
International audienceIn this paper, we study theoretical and computational aspects of risk minimiza...
This paper considers dynamic optimal portfolio strategies of utility maximizing investors in the pre...
We study shortfall risk minimization for American options with path dependent payoffs under proporti...
This paper studies the problem or minimizing coherent risk measures or shortfall for general discret...
We consider the problem of shortfall risk minimization when there is uncertainty about the exact sto...
In this paper we show how to deal with shortfall risk minimization in significant multinomial models...
The idea of efficient hedging has been introduced by Follmer and Leukert (2000). They defined the s...
In this paper we study the dependence on the loss function of the strategy which minimises the expec...
In this paper we study the dependence on the loss function of the strategy which minimises the expec...
We consider the problem of minimizing the shortfall risk when the aim is to hedge a contingent claim...
The shortfall risk is defined as the optimal mean value of the terminal deficit produced by a self-f...
There have been profound ideas on how to measure risk which have influenced the financial market. Sh...
We consider a contingent claim in a jump-diffusion model of complete market. Given initial wealth le...
In this paper we consider models of financial markets in discrete and continuous time case, and we s...
An investor faced with a contingent claim may eliminate risk by (super-)hedging in a financial marke...
International audienceIn this paper, we study theoretical and computational aspects of risk minimiza...
This paper considers dynamic optimal portfolio strategies of utility maximizing investors in the pre...
We study shortfall risk minimization for American options with path dependent payoffs under proporti...
This paper studies the problem or minimizing coherent risk measures or shortfall for general discret...
We consider the problem of shortfall risk minimization when there is uncertainty about the exact sto...
In this paper we show how to deal with shortfall risk minimization in significant multinomial models...
The idea of efficient hedging has been introduced by Follmer and Leukert (2000). They defined the s...