Let d be the discriminant of an imaginary quadratic field. Let a, b, c be integers such that b2 - 4ac = d, a > 0, gcd(a,b,c) = 1. The value of /η ((b + √d)/2a) |is determined explicitly, where η(z) is Dedekind's eta function η(z) = eπiz/12∏∞ m=1(1 - e2πimz) (im(z) > 0) (im(z) > 0)
AbstractLet d, d1, d2 ϵ N be square free with d=d1d2, and let h(-d) and IK denote the class number a...
In this paper, we will discuss recent investigations into the values of zeta and L-functions at s = ...
Abstract. We prove new results concerning the arithmetic nature values of the Gamma function Γ at al...
ABSTRACT. Let η(z) denote the Dedekind eta function. Let ax2+ bxy+ cy2 be a positive-definite, primi...
Abstract. We extend the methods of Van der Poorten and Chapman [7] for explicitly evaluating the Ded...
Abstract. A new technique is described for explicitly evaluating quotients of the Dedekind eta funct...
Let n(z) (ϵ) denote the Dedekind eta function. We use a recent product- To-sum formula in conjunctio...
The sum of divisors function σ(m) is defined by σ(m) = {∑d d∈ℕ d|m if m ∈ ℕ, 0 if m ∈ ℚ, m ∉ ℕ. Let ...
AbstractErich Hecke first showed that the Dedekind zeta-function for an ideal class in an imaginary ...
AbstractWe prove that the number τ=∑l=0∞dl/∏j=1l(1+djr+d2js), where d∈Z, |d|>1, and r,s∈Q, s≠0, are ...
AbstractUnder the Generalized Riemann Hypothesis for the Dedekind zeta-function ζκ, we obtain a form...
AbstractLet D<0 be the fundamental discriminant of an imaginary quadratic field, and h(D) its class ...
A technique is described for explicitly evaluating quotients of the Dedekind eta function at quadrat...
In his lost notebook, Ramanujan defined a parameter λn by a certain quotient of Dedekind eta-functio...
Let L(s,\chi_{D}) be a Dirichlet L-function belonging to the real primitive character \chi_{D} modul...
AbstractLet d, d1, d2 ϵ N be square free with d=d1d2, and let h(-d) and IK denote the class number a...
In this paper, we will discuss recent investigations into the values of zeta and L-functions at s = ...
Abstract. We prove new results concerning the arithmetic nature values of the Gamma function Γ at al...
ABSTRACT. Let η(z) denote the Dedekind eta function. Let ax2+ bxy+ cy2 be a positive-definite, primi...
Abstract. We extend the methods of Van der Poorten and Chapman [7] for explicitly evaluating the Ded...
Abstract. A new technique is described for explicitly evaluating quotients of the Dedekind eta funct...
Let n(z) (ϵ) denote the Dedekind eta function. We use a recent product- To-sum formula in conjunctio...
The sum of divisors function σ(m) is defined by σ(m) = {∑d d∈ℕ d|m if m ∈ ℕ, 0 if m ∈ ℚ, m ∉ ℕ. Let ...
AbstractErich Hecke first showed that the Dedekind zeta-function for an ideal class in an imaginary ...
AbstractWe prove that the number τ=∑l=0∞dl/∏j=1l(1+djr+d2js), where d∈Z, |d|>1, and r,s∈Q, s≠0, are ...
AbstractUnder the Generalized Riemann Hypothesis for the Dedekind zeta-function ζκ, we obtain a form...
AbstractLet D<0 be the fundamental discriminant of an imaginary quadratic field, and h(D) its class ...
A technique is described for explicitly evaluating quotients of the Dedekind eta function at quadrat...
In his lost notebook, Ramanujan defined a parameter λn by a certain quotient of Dedekind eta-functio...
Let L(s,\chi_{D}) be a Dirichlet L-function belonging to the real primitive character \chi_{D} modul...
AbstractLet d, d1, d2 ϵ N be square free with d=d1d2, and let h(-d) and IK denote the class number a...
In this paper, we will discuss recent investigations into the values of zeta and L-functions at s = ...
Abstract. We prove new results concerning the arithmetic nature values of the Gamma function Γ at al...