A universal labeling of a graph G is a labeling of the edge set in G such that in every orientation (Formula presented.) of G for every two adjacent vertices v and u, the sum of incoming edges of v and u in the oriented graph are different from each other. The universal labeling number of a graph G is the minimum number k such that G has universal labeling from (Formula presented.) denoted it by (Formula presented.). We have (Formula presented.), where (Formula presented.) denotes the maximum degree of G. In this work, we offer a provocative question that is: “Is there any polynomial function f such that for every graph G, (Formula presented.)?”. Towards this question, we introduce some lower and upper bounds on their parameter of interest....