This dissertation consists of several results on matroid and graph structure and is organized into three main parts. The main goal of the first part, Chapters 1-3, is to produce a unique decomposition of 3-connected matroids into more highly connected pieces. In Chapter 1, we review the definitions and main results from the previous work of Hall, Oxley, Semple, and Whittle. In Chapter 2, we introduce operations that allow us to decompose a 3-connected matroid M into a pair of 3-connected pieces by breaking the matroid apart at a 3-separation. We also generalize a result of Akkari and Oxley. In Chapter 3, we produce the decomposition. We analyze the properties of equivalent 3-separations and then use these properties to create a decompositio...