This thesis addresses the multi scale heating of a granular energetic solid due to shock loading. To this end, an existing mathematical model that has been used to predict low pressure bulk and localized heating of the granular high-explosive HMX ([CH2NNO2]4) is extended to account for compressibility and melting of the pure phase solid. Dense granular HMX has a heterogeneous structure composed of randomly packed small grains (average size ~ 100 µm) having a free-pour density that is approximately 65% of the pure phase solid density. The shock loading response of this material is complex and consists of both bulk heating due to compression and compaction, and grain scale heating due to stress localization and plastic deformation in the vici...