The method of least squares is an important instrument to determine the optimal linear estimators in regression models. By means of the singular value decomposition we can find the least squares estimators without differentiation, without solving the normal equations and without assumptions on the rank of the data matrix. Even in case of multicollinearity we can find the simple and natural solutions. The results in the paper are not new, they have been developed mainly in numerical publications, but they are hardly to be found in statistical textbooks
Pour approximer une matrice par une matrice de rang plus faible on utilise en général la décompositi...
Diese Arbeit ist einer Verallgemeinerung des bekannten Black-Scholes-Modells gewidmet, welches eines...
This work was supported by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 ‚Reliabl...
The method of least squares is an important instrument to determine the optimal linear estimators in...
The least square method is analyzed. The basic aspects of the method are discussed. Emphasis is give...
In der vorliegenden Arbeit werden das Proper Orthogonal Decomposition (POD) und das Discrete Empiric...
In this thesis we investigate the smallest singular value of random square matrices whose entries ar...
Ziel der vorliegenden Dissertationsschrift ist es, mathematische bzw. numerische Verfahren zur Para...
Reliable simulation techniques for the description of elastic deformation processes in solid mechani...
U radu je opisano stanje razvoja nove iteracijske metode za rješavanje sustava linearnih algebarskih...
V delu diplomskega seminarja definiramo linearne modele več spremenljivk v splošnem. Nato predstavim...
In this thesis, we discuss numerical methods for the solution of the high-dimensional backward Kolmo...
Diese Dissertation umfasst drei Aufsätze zu verschiedenen Themen aus dem Bereich der Mikroökonometri...
No foolproof method exists to fit nonlinear curves to data or estimate the parameters of an intrinsi...
Least-Squares Support Vector Machines (LS-SVM's), originating from Stochastic Learning theory, repr...
Pour approximer une matrice par une matrice de rang plus faible on utilise en général la décompositi...
Diese Arbeit ist einer Verallgemeinerung des bekannten Black-Scholes-Modells gewidmet, welches eines...
This work was supported by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 ‚Reliabl...
The method of least squares is an important instrument to determine the optimal linear estimators in...
The least square method is analyzed. The basic aspects of the method are discussed. Emphasis is give...
In der vorliegenden Arbeit werden das Proper Orthogonal Decomposition (POD) und das Discrete Empiric...
In this thesis we investigate the smallest singular value of random square matrices whose entries ar...
Ziel der vorliegenden Dissertationsschrift ist es, mathematische bzw. numerische Verfahren zur Para...
Reliable simulation techniques for the description of elastic deformation processes in solid mechani...
U radu je opisano stanje razvoja nove iteracijske metode za rješavanje sustava linearnih algebarskih...
V delu diplomskega seminarja definiramo linearne modele več spremenljivk v splošnem. Nato predstavim...
In this thesis, we discuss numerical methods for the solution of the high-dimensional backward Kolmo...
Diese Dissertation umfasst drei Aufsätze zu verschiedenen Themen aus dem Bereich der Mikroökonometri...
No foolproof method exists to fit nonlinear curves to data or estimate the parameters of an intrinsi...
Least-Squares Support Vector Machines (LS-SVM's), originating from Stochastic Learning theory, repr...
Pour approximer une matrice par une matrice de rang plus faible on utilise en général la décompositi...
Diese Arbeit ist einer Verallgemeinerung des bekannten Black-Scholes-Modells gewidmet, welches eines...
This work was supported by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 ‚Reliabl...