Significant improvements in automobile suspension performance are achieved by active systems. However, current active suspension systems are too expensive and complex. Developments occurring in power electronics, permanent magnet materials, and microelectronic systems justifies analysis of the possibility of implementing electromagnetic actuators in order to improve the performance of automobile suspension systems without excessively increasing complexity and cost. In this paper, the layouts of hydraulic and electromagnetic active suspensions are compared. The actuator requirements are calculated, and some experimental results proving that electromagnetic suspension could become a reality in the future are shown