Many wireless applications, such as ad-hoc networks and sensor networks, require decentralized operation in dynamically varying environments. We consider a distributed randomized network coding approach that enables efficient decentralized operation of multi-source multicast networks. We show that this approach provides substantial benefits over traditional routing methods in dynamically varying environments. We present a set of empirical trials measuring the performance of network coding versus an approximate online Steiner tree routing approach when connections vary dynamically. The results show that network coding achieves superior performance in a significant fraction of our randomly generated network examples. Such dynamic settings rep...