Quantum error-correcting codes are analyzed from an information-theoretic perspective centered on quantum conditional and mutual entropies. This approach parallels the description of classical error correction in Shannon theory, while clarifying the differences between classical and quantum codes. More specifically, it is shown how quantum information theory accounts for the fact that “redundant” information can be distributed over quantum bits even though this does not violate the quantum “no-cloning” theorem. Such a remarkable feature, which has no counterpart for classical codes, is related to the property that the ternary mutual entropy vanishes for a tripartite system in a pure state. This information-theoretic description of quantum c...