This dissertation consists of two parts. In the first part, we obtain many new results about MF algebras. First, we continue the work on D. Voiculescu\u27s topological free entropy dimension deltatop (x1, ..., xn) for an n-tuple x&ar; = (x1, ..., xn) of elements in a unital C*-algebra. We also introduce a new invariant that is a C*-algebra analog of the invariant K3 introduced for von Neumann algebras. Second, we discuss a full amalgamated free product of unital MF (and residually finite-dimensional) algebras with amalgamation over a finite-dimensional C*-subalgebra. Necessary and sufficient conditions are given in this situation. In the last chapter, we study the reduced amalgamated free products of C*-algebras, and we show that a re...