This thesis deals with three problems. The first two of the problems are related in that they are concerned with estimation of correlation and precision matrix in spectral norm. These two problems are tackled in Chapters 2, 3. The third problem is the construction of chi-squared type test for groups of variables in high dimensional linear regression. In Chapter 2, we study concentration in spectral norm of nonparametric estimates of correlation matrices. We study two nonparametric estimates of correlation matrices in Gaussian copula models and prove that when both the number of variables and sample size are large, the spectral error of the nonparametric estimators is of no greater order than that of the latent sample covariance matrix, at...
This paper considers a sparse spiked covariance matrix model in the high-dimensional setting and stu...
In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic proces...
High-dimensional statistical inference deals with models in which the number of parameters $p$ is co...
Nowadays an increasing amount of data is available and we have to deal with models in high dimension...
In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic proces...
In high dimensional statistics, estimation and inference are often done by making use of the underly...
This thesis presents three projects, including adaptive estimation in high-dimensional additive mode...
This paper considers the estimation and inference of the low-rank components in high-dimensional mat...
In the field of high-dimensional statistics, it is commonly assumed that only a small subset of the ...
This thesis is concerned about statistical inference for the population covariance matrix in the hig...
We present a Group Lasso procedure for generalized linear models (GLMs) and we study the properties ...
This dissertation examines some prediction and estimations problems that arise in "high dimensions",...
Correlation matrices play a key role in many multivariate methods (e.g., graphical model estimation ...
This thesis considers in the high dimensional setting two canonical testing problems in multivariate...
We consider the problem of fitting the parameters of a high-dimensional linear regression model. In ...
This paper considers a sparse spiked covariance matrix model in the high-dimensional setting and stu...
In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic proces...
High-dimensional statistical inference deals with models in which the number of parameters $p$ is co...
Nowadays an increasing amount of data is available and we have to deal with models in high dimension...
In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic proces...
In high dimensional statistics, estimation and inference are often done by making use of the underly...
This thesis presents three projects, including adaptive estimation in high-dimensional additive mode...
This paper considers the estimation and inference of the low-rank components in high-dimensional mat...
In the field of high-dimensional statistics, it is commonly assumed that only a small subset of the ...
This thesis is concerned about statistical inference for the population covariance matrix in the hig...
We present a Group Lasso procedure for generalized linear models (GLMs) and we study the properties ...
This dissertation examines some prediction and estimations problems that arise in "high dimensions",...
Correlation matrices play a key role in many multivariate methods (e.g., graphical model estimation ...
This thesis considers in the high dimensional setting two canonical testing problems in multivariate...
We consider the problem of fitting the parameters of a high-dimensional linear regression model. In ...
This paper considers a sparse spiked covariance matrix model in the high-dimensional setting and stu...
In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic proces...
High-dimensional statistical inference deals with models in which the number of parameters $p$ is co...