The Slice-Ribbon Conjecture, posed by Fox in 1966, is a long-standing open conjecture that posits that every slice knot is a ribbon knot. It is known and easily seen that every ribbon knot is a slice knot, implying that the conjecture is really a statement about the equivalence of the two notions of `slice\u27 and `ribbon\u27. In 2011, Greene and Jabuka showed that the Slice-Ribbon Conjecture holds for the infinite family of odd 3-stranded pretzel knots. In their work, they give a complete characterization of the slice/ribbon knots in that infinite family. This dissertation is motivated by their work and proves that the family of odd 5-stranded pretzel knots satisfiesa weaker version of the Slice-Ribbon Conjecture: All slice odd 5-stranded ...